Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960283

ABSTRACT

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Subject(s)
Betacoronavirus/chemistry , Clinical Laboratory Techniques/methods , Coronavirus Infections , Nasopharynx/virology , Pandemics , Pneumonia, Viral , Tandem Mass Spectrometry/methods , COVID-19 , COVID-19 Testing , Chromatography, Liquid , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Nucleocapsid Proteins/chemistry , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
2.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-632216

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Subject(s)
Antigens, Viral/biosynthesis , Betacoronavirus/immunology , Proteomics/methods , Viral Vaccines/immunology , Virion/immunology , Animals , Antigens, Viral/immunology , Chlorocebus aethiops , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells
3.
Proteomics ; 20(14): e2000107, 2020 07.
Article in English | MEDLINE | ID: covidwho-419474

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Peptides/analysis , Pneumonia, Viral/virology , Viral Proteins/analysis , Amino Acid Sequence , Animals , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/diagnosis , Proteomics , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells , Viral Structural Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL